Рэлея распределение - definizione. Che cos'è Рэлея распределение
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Рэлея распределение - definizione

Рэлея распределение
  • Функция распределения Рэлея
  • Плотность распределения Рэлея

Рэлея распределение         

распределение вероятностей случайной величины X, характеризующееся плотностью

Функция распределения:

;

EX = σ2;

DX = (4 - π)σ4/2.

Максимальное значение плотности равно 1/σ и достигается при х = σ (на рис. даны графики плотности Р. р. при различных σ). Р. р. встречается в применениях теории вероятностей, например к радиотехнике. Введено Дж. У. Рэлеем (См. Рэлей) (1880) в связи с задачей сложения гармонических колебаний со спиральными фазами.

Рис. к ст. Рэлея распределение.

Рэлея диск         

прибор для измерения силы звука; подробнее см. Диск Рэлея.

РЭЛЕЯ ДИСК         
прибор для абсолютных измерений интенсивности звука. Состоит из круглого тонкого диска, подвешенного на тонкой (обычно кварцевой) нити. Интенсивность звука определяется по углу поворота диска.

Wikipedia

Распределение Рэлея

Распределение Рэлея — это распределение вероятностей случайной величины X {\displaystyle \displaystyle X} с плотностью

f ( x ; σ ) = x σ 2 exp ( x 2 2 σ 2 ) , x 0 , σ > 0 , {\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right),x\geqslant 0,\sigma >0,}

где σ {\displaystyle \displaystyle \sigma }  — параметр масштаба. Соответствующая функция распределения имеет вид

P ( X x ) = 0 x f ( ξ ) d ξ = 1 exp ( x 2 2 σ 2 ) , x 0. {\displaystyle {\mathsf {P}}(X\leqslant x)=\int \limits _{0}^{x}f(\xi )\,d\xi =1-\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right),x\geqslant 0.}

Введено впервые в 1880 г. Джоном Уильямом Стреттом (лордом Рэлеем) в связи с задачей сложения гармонических колебаний со случайными фазами.